Moles and stoichiometry practice problems (from Chapter 3 in Brady, Russell, and Holum’s Chemistry, Matter and its Changes, 3rd Ed.) **Concept of mole/molar ratio**

1) How many moles of sodium atoms correspond to 1.56×10^{21} atoms of sodium?

2) How many moles of Al atoms are needed to combine with 1.58 mol of O atoms to make aluminum oxide, Al_2O_3?

3) How many moles of Al are in 2.16 mol of Al_2O_3?

4) Aluminum sulfate, $\text{Al}_2(\text{SO}_4)_3$, is a compound used in sewage treatment plants.
 a. a. Construct a pair of conversion factors that relate moles of aluminum to moles of sulfur for this compound
 b. b. Construct a pair of conversion factors that relate moles of sulfur to moles of $\text{Al}_2(\text{SO}_4)_3$
 c. c. How many moles of Al are in a sample of this compound if the sample also contains 0.900 mol S?
 d. d. How many moles of S are in 1.16 mol $\text{Al}_2(\text{SO}_4)_3$?

5) How many moles of H$_2$ and N$_2$ can be formed by the decomposition of 0.145 mol of ammonia, NH$_3$?

6) What is the total number of atoms in 0.260 mol of glucose, C$_6$H$_{12}$O$_6$?

7) What is the mass of 1.00 mol of each of the following elements?
e. a. Sodium
f. b. Sulfur
g. c. Chlorine

8) Determine the mass in grams of each of the following:
 h. a. 1.35 mol Fe
 i. b. 24.5 mol O
 j. c. 0.876 mol Ca
d. 1.25 mol Ca₃(PO₄)₂
 l. e. 0.625 mol Fe(NO₃)₃
 m. f. 0.600 mol C₄H₁₀
 n. g. 1.45 mol (NH₄)₂CO₃

9) Calculate the number of moles of each compound:
o. a. 21.5 g CaCO₃
p. b. 1.56 g NH₃
q. c. 16.8 g Sr(NO₃)₂
r. d. 6.98 μg Na₂CrO₄

Percent composition and empirical formulas

10) Calculate the percentage composition by mass of each element in the following compounds:
s. a. NaH₂PO₄
t. b. NH₄H₂PO₄
u. c. (CH₃)₂CO

11) Phencyclidine is C₁₇H₂₅N. A sample suspected of being this illicit drug was found to have a percentage composition of 83.71% C, 10.42% H, and 5.61% N. Do these data acceptably match the theoretical data for phencyclidine?

12) How many grams of O are combined with 7.14x10²¹ atoms of N in the compound N₂O₅?

13) Quantitative analysis of a sample of sodium pertechnetate with a mass of 0.896g found 0.111g Na and 0.477g technetium (Tc). The remainder was oxygen. Calculate the empirical formula of sodium pertechnetate, NaₓTcᵧOᶻ.

14) A substance was found to be composed of 22.9% Na, 21.5% B, and 55.7% O. What is the empirical formula of this compound?

15) When 0.684 g of an organic compound containing only C, H, and O was burned in oxygen 1.312g CO₂ and 0.805g H₂O were obtained. What is the empirical formula of the compound?

Balancing equations
16) Write the equation that expresses in acceptable chemical shorthand the following statement: “Iron can be made to react with molecular oxygen (O₂) to give iron oxide with the formula Fe₂O₃”

17) Balance the following reactions:
 v. a. Ca(OH)₂ + HCl → CaCl₂ + H₂O
 w. b. AgNO₃ + CaCl₂ → Ca(NO₃)₂ + AgCl
 x. c. Fe₂O₃ + C → Fe + CO₃
 y. d. NaHCO₃ + H₂SO₄ → Na₂SO₄ + H₂O + CO₂
 z. e. C₄H₁₀ + O₂ → CO₂ + H₂O
 aa. f. Mg(OH)₂ + HBr → MgBr₂ + H₂O
 bb. g. Al₂O₃ + H₂SO₄ → Al₂(SO₄)₃ + H₂O
 cc. h. KHCO₃ + H₃PO₄ → K₂HPO₄ + H₂O + CO₂
 dd. i. C₉H₁₂O + O₂ → CO₂ + H₂O

Stoichiometry/limiting reactants

18) Chlorine is used by textile manufacturers to bleach cloth. Excess chlorine is destroyed by its reaction with sodium thiosulfate, Na₂S₂O₃:
 Na₂S₂O₃(aq) + 4Cl₂(g) + 5H₂O(aq) → 2NaHSO₄(aq) + 8HCl(aq)
 ee. a. How many moles of Na₂S₂O₃ are needed to react with 0.12mol of Cl₂?
 ff. b. How many moles of HCl can form from 0.12mol of Cl₂?
 gg. c. How many moles of H₂O are required for the reaction of 0.12mol of Cl₂?
 hh. d. How many moles of H₂O react if 0.24mol HCl is formed?

19) The incandescent white of a fireworks display is caused by the reaction of phosphorous with O₂ to give P₄O₁₀.
 ii. a. Write the balanced chemical equation for the reaction.
 jj. b. How many grams of O₂ are needed to combine with 6.85g of P?
 kk. c. How many grams of P₄O₁₀ can be made from 8.00g of O₂?
 ll. d. How many grams of P are needed to make 7.46g P₄O₁₀?

20) In dilute nitric acid, HNO₃, copper metal dissolves according to the following equation:
 3Cu(s) + 8HNO₃(aq) → 3Cu(NO₃)₂(aq) + 2NO(g) + 4H₂O(aq)
 How many grams of HNO₃ are needed to dissolve 11.45g of Cu?

21) The reaction of powdered aluminum and iron(II)oxide,
 2Al(s) + Fe₂O₃(s) → Al₂O₃(s) + 2Fe(l)
 produces so much heat the iron that forms is molten. Because of this, railroads use the reaction to provide molten steel to weld steel rails together when laying track. Suppose that in one batch of reactants 4.20mol Al was mixed with 1.75mol Fe₂O₃.
 mm. a. Which reactant, if either, was the limiting reactant?
 nn. b. Calculate the mass of iron (in grams) that can be formed from this mixture of reactants.

22) Silver nitrate, AgNO₃, reacts with iron(III) chloride, FeCl₃, to give silver chloride, AgCl, and iron(III) nitrate, Fe(NO₃)₃. A solution containing 18.0g AgNO₃ was mixed with a solution containing 32.4g FeCl₃. How many grams of which reactant remains after the reaction is over?
Theoretical and percent yield

23) Barium sulfate, BaSO_4, is made by the following reaction:

$$\text{Ba(NO}_3\text{)}_2(\text{aq}) + \text{Na}_2\text{SO}_4(\text{aq}) \rightarrow \text{BaSO}_4(\text{s}) + 2\text{NaNO}_3(\text{aq})$$

An experiment was begun with 75.00g of $\text{Ba(NO}_3\text{)}_2$ and an excess of Na_2SO_4. After collecting and drying the product, 63.45g BaSO_4 was obtained. Calculate the theoretical yield and percent yield of BaSO_4.

24) Aluminum sulfate can be made by the following reaction:

$$2\text{AlCl}_3(\text{aq}) + 3\text{H}_2\text{SO}_4(\text{aq}) \rightarrow \text{Al}_2(\text{SO}_4)_3(\text{aq}) + 6\text{HCl(}\text{aq})$$

It is quite soluble in water, so to isolate it the solution has to be evaporated to dryness. This drives off the volatile HCl, but the residual solid has to be treated to a little over 200°C to drive off all the water. In one experiment, 25.0g of AlCl_3 was mixed with 30.0g H_2SO_4. Eventually, 28.46g of pure $\text{Al}_2(\text{SO}_4)_3$ was isolated. Calculate the percent yield.

Answers

1) 2.59×10^{-3}mol Na atoms
2) 1.05mol Al
3) 4.32mol Al
4) a. 2mol Al/3mol Sb. 3mol S/1mol $\text{Al}_2(\text{SO}_4)_3$ c. 0.600mol Al d. 3.48mol S
5) 0.0725mol N_2 and 0.218mol H_2
6) 3.76x10^{24} atoms
7) a. 23.0g Na b. 32.1g S c. 35.3g Cl
8) a. 75.4g Fe b. 392g O c. 35.1g Ca d. 388g $\text{Ca}_3(\text{PO}_4)_2$
9) e. 151g $\text{Fe(NO}_3\text{)}_2$ f. 34.9g C_4H_{10} g. 139g $(\text{NH}_4)_2\text{CO}_3$
10) a. 19.2% Na, 1.68% H, 25.8% P, 53.3% O b. 12.2% N, 5.26% H, 26.9% P, 55.6% O c. 62.0% C, 10.4% H, 27.6% O
11) Theoretical data (83.89% C, 10.35% H, 5.76% N) are consistent with experimental results.
12) 0.474g O
13) NaTcO_4
14) $\text{Na}_2\text{B}_4\text{O}_7$
15) $\text{C}_2\text{H}_6\text{O}$
16) $4\text{Fe} + 3\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3$
17) a. $\text{Ca(OH)}_2 + 2\text{HCl} \rightarrow \text{CaCl}_2 + 2\text{H}_2\text{O}$
 b. $2\text{AgNO}_3 + \text{CaCl}_2 \rightarrow \text{Ca(NO}_3\text{)}_2 + 2\text{AgCl}$
 c. $2\text{Fe}_2\text{O}_3 + 3\text{C} \rightarrow 4\text{Fe} + 3\text{CO}_2$
 d. $2\text{NaHCO}_3 + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O} + 2\text{CO}_2$
 e. $2\text{CaH}_2 + 13\text{O}_2 \rightarrow 8\text{CO}_2 + 10\text{H}_2\text{O}$
 f. $\text{Mg(OH)}_2 + 2\text{HBr} \rightarrow \text{MgBr}_2 + 2\text{H}_2\text{O}$
 g. $\text{Al}_2\text{O}_3 + 3\text{H}_2\text{SO}_4 \rightarrow \text{Al}_2(\text{SO}_4)_3 + 3\text{H}_2\text{O}$
h. \[2\text{KHCO}_3 + \text{H}_3\text{PO}_4 \rightarrow \text{K}_2\text{HPO}_4 + 2\text{H}_2\text{O} + 2\text{CO}_2 \]
i. \[\text{C}_9\text{H}_{10}\text{O} + 14\text{O}_2 \rightarrow 9\text{CO}_2 + 10\text{H}_2\text{O} \]

18) a. 0.030mol Na$_2$S$_2$O$_3$ b. 0.24mol HCl c. 0.15mol H$_2$O d. 0.15mol H$_2$O

19) a. 4P + 5O$_2$ \rightarrow P$_4$O$_{10}$ b. 8.85g O$_2$ c. 14.2g P$_4$O$_{10}$ d. 3.26g P

20) 30.31g HNO$_3$

21) a. limiting reactant is Fe$_2$O$_3$ b. 195g Fe is formed

22) 26.7g of FeCl$_3$ are left over

23) theoretical yield = 66.98g BaSO$_4$, % yield = 94.73%

24) % yield = 88.74%