Moles and stoichiometry practice problems (from Chapter 3 in Brady, Russell, and Holum's Chemistry, Matter and its Changes, $3^{\text {rd }}$ Ed.) Concept of mole/molar ratio

1) How many moles of sodium atoms correspond to 1.56×10^{21} atoms of sodium?
2) How many moles of Al atoms are needed to combine with 1.58 mol of O atoms to make aluminum oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$?
3) How many moles of Al are in 2.16 mol of $\mathrm{Al}_{2} \mathrm{O}_{3}$?
4) Aluminum sulfate, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, is a compound used in sewage treatment plants.
a. a. Construct a pair of conversion factors that relate moles of aluminum to moles of sulfur for this compound
b. b. Construct a pair of conversion factors that relate moles of sulfur to moles of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
c. c. How many moles of Al are in a sample of this compound if the sample also contains 0.900 mol S ?
d. d. How many moles of S are in $1.16 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?
5) How many moles of H_{2} and N_{2} can be formed by the decomposition of 0.145 mol of ammonia, NH_{3} ?
6) What is the total number of atoms in 0.260 mol of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
7) What is the mass of 1.00 mol of each of the following elements?
e. a. Sodium
f. b. Sulfur
g. c. Chlorine
8) Determine the mass in grams of each of the following:
h. a. 1.35 mol Fe
i. b. 24.5 mol O
i. c. 0.876 mol Ca
k. d. $1.25 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
l. e. $0.625 \mathrm{~mol} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$
m. f. $0.600 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}$
n. g. $\quad 1.45 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
9) Calculate the number of moles of each compound:
o. a. $21.5 \mathrm{~g} \mathrm{CaCO}_{3}$
p. b. $1.56 \mathrm{~g} \mathrm{NH}_{3}$
q. c. $16.8 \mathrm{~g} \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$
r. d. $6.98 \mu \mathrm{~g} \mathrm{Na}_{2} \mathrm{CrO}_{4}$

Percent composition and empirical formulas

10) Calculate the percentage composition by mass of each element in the following compounds:
s. a. $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
t. b. $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$
u. c. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
11) Phencyclidine is $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}$. A sample suspected of being this illicit drug was found to have a percentage composition of $83.71 \% \mathrm{C}, 10.42 \% \mathrm{H}$, and $5.61 \% \mathrm{~N}$. Do these data acceptably match the theoretical data for phencyclidine?
12) How many grams of O are combined with 7.14×10^{21} atoms of N in the compound $\mathrm{N}_{2} \mathrm{O}_{5}$?
13) Quantitative analysis of a sample of sodium pertechnetate with a mass of 0.896 g found 0.111 g Na and 0.477 g technetium (Tc). The remainder was oxygen. Calculate the empirical formula of sodium pertechnetate, $\mathrm{Na}_{x} \mathrm{Tc}_{y} \mathrm{O}_{z}$.
14) A substance was found to be composed of $22.9 \% \mathrm{Na}, 21.5 \% \mathrm{~B}$, and $55.7 \% \mathrm{O}$. What is the empirical formula of this compound?
15) When 0.684 g of an organic compound containing only C, H, and O was burned in oxygen $1.312 \mathrm{~g} \mathrm{CO}_{2}$ and $0.805 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ were obtained. What is the empirical formula of the compound?

Balancing equations

16) Write the equation that expresses in acceptable chemical shorthand the following statement: "Iron can be made to react with molecular oxygen $\left(\mathrm{O}_{2}\right)$ to give iron oxide with the formula $\mathrm{Fe}_{2} \mathrm{O}_{3}$ "
17) Balance the following reactions:
v. a. $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
w. b. $\mathrm{AgNO}_{3}+\mathrm{CaCl}_{2} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{AgCl}$
x. c. $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{C} \rightarrow \mathrm{Fe}+\mathrm{CO}_{3}$
y. d. $\mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
z. e. $\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
aa.f. $\mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{HBr} \rightarrow \mathrm{MgBr}_{2}+\mathrm{H}_{2} \mathrm{O}$
bb. g. $\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$
cc. h. $\mathrm{KHCO}_{3}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{HPO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
dd. i. $\quad \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Stoichiometry/limiting reactants

18) Chlorine is used by textile manufacturers to bleach cloth. Excess chlorine is destroyed by its reaction with sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$:
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{aq})}+4 \mathrm{Cl}_{2(\mathrm{~g})}+5 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})} \rightarrow 2 \mathrm{NaHSO}_{4(\mathrm{aq})}+8 \mathrm{HCl}_{(\mathrm{aq})}$
ee. a. How many moles of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ are needed to react with 0.12 mol of Cl_{2} ?
$f f$. b. How many moles of HCl can form from 0.12 mol of Cl_{2} ?
gg. c. How many moles of $\mathrm{H}_{2} \mathrm{O}$ are required for the reaction of 0.12 mol of Cl_{2} ?
hh. d. How many moles of $\mathrm{H}_{2} \mathrm{O}$ react if 0.24 mol HCl is formed?
19) The incandescent white of a fireworks display is caused by the reaction of phosphorous with O_{2} to give $\mathrm{P}_{4} \mathrm{O}_{10}$.
ii. a. Write the balanced chemical equation for the reaction.
ii. b. How many grams of O_{2} are needed to combine with 6.85 g of P ?
kk. c. How many grams of $\mathrm{P}_{4} \mathrm{O}_{10}$ can be made from 8.00 g of O_{2} ?
II. d. How many grams of P are needed to make $7.46 \mathrm{~g}_{4} \mathrm{O}_{10}$?
20) In dilute nitric acid, HNO_{3}, copper metal dissolves according to the following equation:

$$
3 \mathrm{Cu}_{(\mathrm{s})}+8 \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{NO}_{(\mathrm{g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}
$$

How many grams of HNO_{3} are needed to dissolve 11.45 g of Cu ?
21) The reaction of powdered aluminum and iron(II)oxide, $2 \mathrm{Al}_{(\mathrm{s})}+\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}+2 \mathrm{Fe}_{(\mathrm{l})}$
produces so much heat the iron that forms is molten. Because of this, railroads use the reaction to provide molten steel to weld steel rails together when laying track. Suppose that in one batch of reactants 4.20 mol Al was mixed with $1.75 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$.
mm . a. Which reactant, if either, was the limiting reactant?
nn. b. Calculate the mass of iron (in grams) that can be formed from this mixture of reactants.
22) Silver nitrate, AgNO_{3}, reacts with iron(III) chloride, FeCl_{3}, to give silver chloride, AgCl , and iron(III) nitrate, $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$. A solution containing $18.0 \mathrm{~g} \mathrm{AgNO}_{3}$ was mixed with a solution containing $32.4 \mathrm{~g} \mathrm{FeCl}_{3}$. How many grams of which reactant remains after the reaction is over?

Theoretical and percent yield

23) Barium sulfate, BaSO_{4}, is made by the following reaction:

$$
\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow \mathrm{BaSO}_{4(\mathrm{~s})}+2 \mathrm{NaNO}_{3(\mathrm{aq})}
$$

An experiment was begun with 75.00 g of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ and an excess of $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After collecting and drying the product, $63.45 \mathrm{~g} \mathrm{BaSO}_{4}$ was obtained. Calculate the theoretical yield and percent yield of BaSO_{4}.
24) Aluminum sulfate can be made by the following reaction:

$$
2 \mathrm{AlCl}_{3(\mathrm{aq})}+3 \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq})}+6 \mathrm{HCl}_{(\mathrm{aq})}
$$

It is quite soluble in water, so to isolate it the solution has to be evaporated to dryness. This drives off the volatile HCl , but the residual solid has to be treated to a little over $200^{\circ} \mathrm{C}$ to drive off all the water. In one experiment, 25.0 g of AlCl_{3} was mixed with $30.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}$. Eventually, 28.46 g of pure $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ was isolated. Calculate the percent yield.

Answers

1) $2.59 \times 10^{-3} \mathrm{~mol} \mathrm{Na}$ atoms
2) 1.05 mol Al
3) 4.32 mol Al
4) a. $2 \mathrm{~mol} \mathrm{Al} / 3 \mathrm{~mol} \mathrm{Sb} .3 \mathrm{~mol} \mathrm{~S} / 1 \mathrm{~mol} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \quad$ c. $0.600 \mathrm{~mol} \mathrm{Al} \quad$ d. 3.48 mol S
5) $0.0725 \mathrm{~mol} \mathrm{~N} \mathrm{~N}_{2}$ and $0.218 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}$
6) 3.76×10^{24} atoms
7) a. 23.0 g Na
b. 32.1 g S
c. 35.3 g Cl
8) $a .75 .4 \mathrm{~g} \mathrm{Fe}$
b. 392 g O
c. 35.1 g Ca
d. $388 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
e. $151 \mathrm{~g} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$
f. $34.9 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10}$
g. $139 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
9) a. 0.215 mol
b. 0.0916 mol
c. 0.0794 mol
d. $4.31 \times 10^{-8} \mathrm{~mol}$
10) a. $19.2 \% \mathrm{Na}, 1.68 \% \mathrm{H}, 25.8 \% \mathrm{P}, 53.3 \% \mathrm{O}$
b. $12.2 \% \mathrm{~N}, 5.26 \% \mathrm{H}, 26.9 \%$ P, $55.6 \% \mathrm{O}$
c. 62.0% C, $10.4 \% \mathrm{H}, 27.6 \%$ O
11) Theoretical data ($83.89 \% \mathrm{C}, 10.35 \% \mathrm{H}, 5.76 \% \mathrm{~N}$) are consistent with experimental results.
12) 0.474 g O
13) NaTcO_{4}
14) $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$
15) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
16) $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
17)

a. $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
b. $2 \mathrm{AgNO}_{3}+\mathrm{CaCl}_{2} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{AgCl}$
c. $2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{Fe}+3 \mathrm{CO}_{3}$
d. $2 \mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}$
e. $2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$
f. $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{HBr} \rightarrow \mathrm{MgBr}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
g. $\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}$
h. $2 \mathrm{KHCO}_{3}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{HPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}$
i. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}+14 \mathrm{O}_{2} \rightarrow 9 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$
18) a. $0.030 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ b. $0.24 \mathrm{~mol} \mathrm{HCl} \quad$ c. $0.15 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
d. $0.15 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}$
19) a. $4 \mathrm{P}+5 \mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}$
b. $8.85 \mathrm{~g} \mathrm{O}_{2} \quad$ c. $14.2 \mathrm{~g} \mathrm{P}_{4} \mathrm{O}_{10}$
d. 3.26 g P
20) $30.31 \mathrm{~g} \mathrm{HNO}_{3}$
21) a. limiting reactant is $\mathrm{Fe}_{2} \mathrm{O}_{3} \quad$ b. 195 g Fe is formed
22) 26.7 g of FeCl_{3} are left over
23) theoretical yield $=66.98 \mathrm{~g} \mathrm{BaSO}_{4}, \%$ yield $=94.73 \%$
24) $\%$ yield $=88.74 \%$

